encabezado
   
Sistema de bibliotecas
   
Vista normal Vista MARC Vista ISBD

Distribution of elasticity estimates computed from factor demand systems

Por: Gallant, R.A [autor/a].
Colaborador(es): IICA, Brasilia, DF (Brasil) | Empresa Brasileira de Investigación Agropecuaria (EMBRAPA) Brasilia, Brasil.
Tipo de material: ArtículoArtículoSeries Publiçacöes Miscelâneas (IICA) ; no. 89-055. Editor: Brasilia, DF (Brasil): IICA, 1988Descripción: 41 páginas: 1 tabla.ISSN: 0534-0591.Tema(s): ECONOMETRIA | DEMANDARecursos en línea: eng Resumen: Sequences defining a relationship between the number of parameters in a Fourier factor demand systems and the sample size such that elasticity estimates are asymptotically normal are characterized. The main technical problem in achieving this characterization is caused by the fact that the minimum eigenvalue of the expected sum of squares and cross products matrix of the generalized least squares estimator, considered as a function of the number of parameters, decreases faster than any polynomial. This problem is addressed by establishing a uniform strong law with rate for the eigenvalues of the sample sum of squares and cross products matrix. Because the minimum eingenvalue decreases faster than any polynomial, these sequences that relate parameters to sample size grow slower than any fractional power of the sample size. (MIBA)
Tipo de ítem Ubicación actual Colección Signatura Estado Fecha de vencimiento Código de barras
Documento impreso Documento impreso Biblioteca Conmemorativa Orton
Colección IICA IICA PM-A4/BR 89-055 (Navegar estantería) Disponible 82402
Documento digital Documento digital Sede Central
Colección IICA IICA-PM A4/BR No.89-055 (Navegar estantería) Disponible BVE20078203

Incluye 17 referencias bibliográficas en las páginas R.1-R.2

Sequences defining a relationship between the number of parameters in a Fourier factor demand systems and the sample size such that elasticity estimates are asymptotically normal are characterized. The main technical problem in achieving this characterization is caused by the fact that the minimum eigenvalue of the expected sum of squares and cross products matrix of the generalized least squares estimator, considered as a function of the number of parameters, decreases faster than any polynomial. This problem is addressed by establishing a uniform strong law with rate for the eigenvalues of the sample sum of squares and cross products matrix. Because the minimum eingenvalue decreases faster than any polynomial, these sequences that relate parameters to sample size grow slower than any fractional power of the sample size. (MIBA)

No hay comentarios para este ejemplar.

Ingresar a su cuenta para colocar un comentario.

Haga clic en una imagen para verla en el visor de imágenes


Contacto: biblioteca.orton@iica.int | servicios.biblioteca@iica.int | teléfono (+506) 2558-2043